Multifractal Modelling of Porosity in Heterogeneous Aquifers
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Abstract This paper presents a method to estimate the long-range dependence and multifractality in
the data on porosity observed at two locations of the Bundaberg saltwater monitoring network. The

resulting models will be used in the classification and clustering of the network.

1. INTRODUCTION

Over-exploitation of coastal aquifers in Queens-
land results in saltwater ntrusion into the
acuifers. The Queensland Department of Natural
Resources is addressing the problem m: the Bund-
aberg area, in part, by substituting surface wa-
ter for groundwater in problem areas and by ap-
plying severe water restrictions. There is a need
for developing a reliable model for prediction of
saltwater intrusion which enhances resource man-
agement decisions and maintains production from
ioportant aquifers.

Management of many aquifer systems takes place
on a number of scales ranging from the regional
scale of tens of kilometers down to the farm prop-
erty scale of 0.5-1 kilometer. Hydraulic data from
monitoring bores are used to estimate large scale
variations of hydraulic conductivity. On the other
hand, solute transport models require information
on hydraulic conductivity at a much finer scale
than that of hydraulic head data. It is thercfore
essential to be able to fuse hydraulic head data,
solute concentrations and geological data to result
in a transport mode] that can represent both fine
and large scale aquifer heterogeneities.

This paper will describe the first step in the devel-
opment of such a model, namely, the characteri-
gation of monitoring data. The current saltwater
monitoring network of 260 boreholes covers a large
coastal area with various degree of heterogeneity.
The characteristics of these monitoring data will
be used to identify homogeneous clusters of the
region.

We shall Tely on the possible long-range depen-

dence (LRD) and multifractality of measurements
on porosity and hydraulic conductivity to clas-
sify the network. We estimate the LRD exponent
in each data series based on the fractional Riesz-
Bessel motion model. Multifractal data are mod-
elled as multiplicative cascades generated from a
binomial probability distribution on a Cantor set.
The multifractality of the data is then inferred
via the multifractal formalism. This paper will
present some numerical results based on measure-
ments of porosity at two locations of the network.
It is the purpose of the paper to demonstrate the
potential of this method in clustering the network.

Section 2 will describe the models used in the esti-
mation of the LRD exponent and the multifractal-
ity of the data series. Section 3 will present some
numerical results on porosity data, and some con-
clusions will be drawn in Section 4.

2. METHODOLOGY

Let {X (#),t € B} be a stationary process with
mean zero. We shall assume that the spectral den-
sity of X {t) has the form

(o4
A ——— 1
0 = SEaTE )
c > 0,0<fy<%,oz+'y>%~,AE]R.

It is noted that f{A) has an integrable pole at
A = (. Hence, by definition, the process X (£}
possesses LRD, and the exponent -y denotes the
extent of this LRD. Also, [ f{Ajdh < oo for
0 < v < 1/2 and a+ vy > 1/2. Thus, the com-

ponent (14 A%)”" plays an important role in the
definition of a spectral density of the form (1).
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In fact, (1+ /\z)mn is the Fourier transform of
the Bessel potential, while |X| ™7 is the Fourier
transform of the Riesz potential. A process with
spectral density of the form (1) is shown to exist
and named the Riesz-Bessel motion in Anh et al.
(1999a]. It is shown in Anh et al [1999b] that
the exponent o indicates the second-order inter-
mittency of the process X (£).

We shall estimate the parameters 8 = (g,v,0) €
0 = {0, 00) % (0,1/2) % (0,1) of (1) by computing
the minimum constrast estimator 8 defined by

N O —HTY i T . 2
A arg min Ly {6}, (2
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where Gp 1s a compact subset of ©,

_ 1 , In (0N dr

The objective function (3} is the continucus ver-
sion of the Gauss-Whittle contrast function, The
form (3) is suggested from the entropy formula for
a continuous-time process as given in Dym and
McKean [1976]. The periodogram Iy (X) in (3) is
computed as

2

1 N )
[f\.' ()\} = ;ﬁ /0 8_2MX (T) d,t ) (4}

where NV > (} is the upper bound of the interval
[0, N} on which X () is observed. As estahlished
in Gao et al. [1999], as N — oo,

Ely ()‘) - f(’)\)gﬂ)

E{In () = EIv (A) = f2 (0, 80) +o(1),
E{Iny (N~ Bl (A) Iy () = Ely ()
=a{l) YAAG AFw,

& — g with probability 1,

where &g is the true value of 8. Thus the method
produces a strongly consistent estimator for both
LRD and intermittency parameter.

Let us now look at a model for the multi-
fractality of the process X (). Define Y (t) =
[XO/EIX (. Then Y (1) >0 and EY {f) = 1
for all £. For each ¢ in E, let

log A
a(t) = lim ‘B BEHN)
s} 10g‘?"

be the local dimension of ¥ at ¢, where B (i Ty =
{sls~tl <vr}and V(B{#r) = fB(t;r} Y {s}ds.
Let Ga) = {f;a(t) = a} and let f{a) be the
Hausdorf! dimension of G (a). We call f(a) the
singularity spectrum of ¥, and we say that ¥V is a
mudiifractal measure if f{c) # 0 for a continnum

of av. In this definition, monofractals therefore con-
sist of singularities all of the same strength (..
a{q) = «, a constant, for all ¢, and the graph of
f {a consists of one point). On the other hand,
multifractals will display heterogenecous scaling,
which can be characterised by

S E) ~r @ ge R, (5)
as r — [}, where the sum is taken over all disjoint
mtervals of length r in the smoothing

1 /e
Yitir) =~ / Yia)ds, r > 0.
t—%

T' i
There is a relationship between f{c) and (g},
In fact, let 7* denote the conecave conjugate of r
{also known as the Legendre transform of 7), Le.,

(o) = i {ga -7 (9)}.

Hentschel and Procaccia [1983], Halsey et al.
[1986] showed heuristically that, if the meawre
Y is constructed from a cascade algorithm and
if 7(g) and f{a) are smooth and concave, then
™ {a) = [ () and dually f*{g) =7(q).

This relationship is called the multifractal formal-
ism. The multifactal formalism is a useful tool
i applications. In fact, if yields that

T{g}= sup {f(a)~-qa}.

O<o<oo

Suppose that the supremum 13 attained at o =

e {g) > (. Then
L (Fla) - qa) =0
— - qoe) = (3,
dex w4 i

which implies

0= (ata),
and
dr
dg

df de de
= e —a{g) — g

dee dg dq

= ~a(g}. (6)
Given a sample of X {2}, the mass exponent 7 {g)
can be computed from (5} via a log regression.
The function «(q) is then given hy (6) and the
singularity spectrum f {«) is obtained from

T{g) = flalg)) —qa(g). (7)

Our basic assumption is that ¥ (1) is generated by
a multiplicative vascade with a binomial generator
characterised by a probability p,0 < p < % In
ather words, according to Falconer [1990)],

log 3 (¥ (1:7))F = log (= o5+ 0=}



From {5) and (7) we get
log 3 (¥ (67)

AC Em»o log »
= ~log (p*+(1~-p)%. (8
Define
K{g)=-7l{g+g-1 )

Then, for the binomial cascade described above,

Kig)=logy (p"+(1-p)*)+g-1  (10)
Remark 1 1t follows directly from (9) that
K{(0) =0, and since EY (t;r) = 1 by definition,
we alsp hove K{1) = 0. Writing ¥ for Y ($;7)
and considering v sufficiently small, we gel from

(G) and (10) that
log E(Y?)

logr

K{g) = (11)

Thus
(E(Y%logY)jlogy
E(Ya) ’

K' (q)logr =

K" (q)logr = (E(Y9))
” (E(Yq) ( (Yq (log V) ))10 gV
(B (Ylog ¥)) iocf}’)

But

it

(E (Y%ﬁ logY))2

By E (v (logY))

(E(Y?log¥))’

A

by Schwarz’s inequality. Consegquenily, K' {q) =
0, so that K {q) is a convexr function. It also fol-
lows from (11} that K (g} < 0 if E(Y9) < 1,
which helds only if 0 < g < 1. These results are
useful when the madel (10) 15 fitted to empirical
data.

Remark 2 In order to eramine directly whether
Y (£} ds monofractal or madlifractal, 41 4 more
convenient to consider another scaling exponent
gqivern by

EY (8 =Y (t—r)l ~rl®, g0,

as v — {. It is seen that ({0) = 0, and no other
erponent 13 known a priori {in contrast to K (q),
where there are two a priorl exponents: K (0} =0
and K (1) = 0). Following the same argumend
as for K{q), it can be shown that " {g) < 0
hence ¢ (g) is concave. Furthermore, under the
condition that Y (t) is bounded, the function ( (g)
is monotonically nondecreasing (Marshek et al.
[1994}). These results imply that, if Y (t) is a

monofractal, its scaling will be simply given by
C{q) = qor, where v is a constant. In particular,
for fractional Brownian motion uith Hurst index
H, we have { {g) = qgH. This result is a convernient
tool to test if Y (t) is a monofractal.

3. EXPERIMENTAL RESULTS

Figure 1 displays the locations of the hores at
Gooburrum, which form part of the Bundaberg
saltwater monitoring network. In particular, the
bores 13700202 and 13500148 arc marked on the
map. This paper examines the measurements of
porosity at these two locations. The measure
ments are collected at regular intervals of Zem
and going down to 70m deep. The series at bores
13700202 and 13500148 are plotted in Figures 2
and 3 respectively. We assume that they are sam-
ple paths of a stationary stochastic process with
spectral density of the form (1). The periodogram
of the series of Figure 2, computed as in {4), is dis-
played in Figure 4 in the log-log form {Le. In f ()
against In ). It shows a negative slope in the
low frequency range and a steeper negative slope
in the high frequency range; hence the form (3)
seems suitable in modelling this data series. The
parameters ¢, v and o are next estimated by solv-
ing problem (2). The following values are ob-
tained: ¢ = 10.9, v = 0.389, a = 0.463. The cor-
responding estimates for the data series of Figure
3arec=11.6, v = 0.348, a = 0.506.

The estimated value of ~ means that LRD is
present, while the estimated value of o indicates
a possible muldtiple scaling of the data series {in-
stead of a monoscaling behaviour as in selff-similar
processes). The condition ety > 1/2 is also satis-
fied, confirming the appropriateness of modei (1).
The fitted model is shown as the solid line in Fig-
ure 4.

We next study the multifractality of the data se-
ries. We first compute the expanent {(g) as a
function of ¢ as defined in Remark 2 using log
regression. The {{g) function is plotted in Fig-
ure 5 for the data at bore 13700202 as an ox-
ample. It can be seen that {{g) is a nonlinear
function of g, indicating that the series is multi-
fractal. The exponent K (g} is next computed as
in {9) and (5}, again using log regression. This is
shown in Figure § for the data at bore 13700202
and in Figure 7 for the data at bore 13500148.
It is seen that the curves display the theoretical
convex shape as demonstrated in Reroark 1, with
zeroes at ¢ = 0 and ¢ = 1. The model (10) is then
fitted using nonlinear least squares to the K {g)
curves. The estimates for the probability p gener-
ating the multiplicative cascade are p = (14641 for
bore 13700202 and p == (.4657 for bore 13500148,
The amaller value of p for bore 13700202 means
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thar this location is more intermittent than bore
13500148, The different values of the probability
p therefore indicate that these two locations have
different scaling behaviours.

4. CONCLUSIONS

The experimental results confirm the simultane-
ous presence of long-range dependence and multi-
fractality in the porosity data. The excellent fit of
madels (1) and (10} indicates that, even though
simple, they are quite adequate in capturing these
rwo important phenomena and distinguishing the
dhfferent behaviours of the data. The models will
he used to characterise the monitoring data at
cach location of the network., The information
distance between anyv two locations will then be
computed using the spectral density (1) and the
probability p inferred from modsl {103). These in-
formation distances play a key role in the cluster-
ing of the monitoring network. This will be the
next stage of the program outlined i the Intro-
duction.
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Figure 1: Saltwater monitoring hores at Gooltnir-
rum, Bundaberg, with the locations of hores
13500148 and 13700202 indicated.
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Figure 2: Porosity at bore 13700202 in the Bund-
aberg irrigation area.
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Figure 3: Porosity at bore 13500148 in the Bund-
aberg irrigation area.
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Figure 4: The periodogram and the fitted model
(solid line} of the data series of Figure 2.
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Figure 7: The multifractal exponent K (g) and the

igure 5: The 3 f the d les of
Figure 5 @ exponent ( (g) of the data serios o fitted model of the data series of Figure 3.
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Figure 6: The multifractal exponent K (g) and the
fitted model of the data series of Figure 2.
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